organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 2-(4-chlorophenyl)-3-(3,5-difluorophenoxy)acrylate

Hai-Bin Gong,* Jie Wang, Ying Liu and Lei Wang

Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou 221009, People's Republic of China Correspondence e-mail: adler_20008@yahoo.com.cn

Received 31 October 2008; accepted 10 November 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.071; wR factor = 0.283; data-to-parameter ratio = 14.8.

In the title compound, $C_{17}H_{13}ClF_2O_3$, a multifunctional aromatic compound, the dihedral angle between the two benzene rings is 51.8 (3)°.

Related literature

For the biological activities of phenylacetate and styrene derivatives, see: Fang *et al.* (2007); Liu *et al.* (2008); Shi *et al.* (2007, 2008); Zhang, *et al.* (2008). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

$C_{17}H_{13}ClF_2O_3$
$M_r = 338.72$
Monoclinic, $P2_1/c$
a = 9.4999 (17) Å
<i>b</i> = 7.6771 (14) Å
c = 21.564 (4) Å
$\beta = 91.40 \ (3)^{\circ}$

 $V = 1572.2 (5) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.28 \text{ mm}^{-1}$ T = 298 (2) K $0.23 \times 0.20 \text{ mm}$

Data collection

```
Bruker SMART 1000 CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
T_{\rm min} = 0.939, T_{\rm max} = 0.947
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.071$ 209 parameters $wR(F^2) = 0.283$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.47$ e Å $^{-3}$ 3090 reflections $\Delta \rho_{min} = -0.53$ e Å $^{-3}$

3284 measured reflections

 $R_{\rm int} = 0.041$

3090 independent reflections

2000 reflections with $I > 2\sigma(I)$

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (No. 30572073), the Natural Science Foundation of Jiangsu Province of China (No. DK2005428), the Medical Science and Technology Development Foundation, Jiangsu Province Department of Health (No. K200402), and the Social Development Foundation of Xuzhou (No. X2003025).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2439).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fang, R.-Q., Li, H.-Q., Shi, L., Xiao, Z.-P. & Zhu, H.-L. (2007). Acta Cryst. E63, 03975.
- Liu, X.-H., Lv, P.-C., Li, B. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 223–230.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, L., Fang, R.-Q., Li, H.-Q. & Zhu, H.-L. (2007). Acta Cryst. E63, 04041.
- Shi, L., Huang, X.-F., Zhu, Z.-W., Li, H.-Q., Xue, J.-Y. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 472–475.
- Zhang, L.-N., Cao, P., Tan, S.-H., Gu, W., Shi, L. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1543–1551.

supplementary materials

Acta Cryst. (2008). E64, o2372 [doi:10.1107/S1600536808036957]

Ethyl 2-(4-chlorophenyl)-3-(3,5-difluorophenoxy)acrylate

H.-B. Gong, J. Wang, Y. Liu and L. Wang

Comment

Recently, a few phenylacetate and styrene derivatives have been reported with versatile biological activities (Fang *et al.*, 2007; Liu *et al.*, 2008; Shi *et al.*, 2007, 2008; Zhang, *et al.*, 2008). We report herein the title new compound, (I), (Fig. 1).

In compound (I), the dihedral angle between the C1—C6 and C7—C12 phenyl rings is $51.8 (3)^\circ$, indicating the molecule is not coplanar. The O3/C13—C15/O1/O2 plane forms dihedral angles of 20.7 (3)° and 47.6 (3)°, respectively, with C1—C6 and C7—C12 phenyl rings. All the bond lengths of the molecule are in normal ranges (Allen *et al.*, 1987).

Experimental

Equimolar ethyl 3-bromo-2-(4-chlorophenyl)acrylate and 3,5-difluorophenol reacted in chloroform overnight, giving a colorless solution. Block crystals of the compound were formed by gradual evaporation of the solution in air for a week.

Refinement

H atoms were included in the riding model approximation with C–H = 0.93–0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Ethyl 2-(4-chlorophenyl)-3-(3,5-difluorophenoxy)acrylate

Crystal data	
C ₁₇ H ₁₃ ClF ₂ O ₃	$F_{000} = 696$
$M_r = 338.72$	$D_{\rm x} = 1.431 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1213 reflections
a = 9.4999 (17) Å	$\theta = 2.5 - 25.3^{\circ}$
b = 7.6771 (14) Å	$\mu = 0.28 \text{ mm}^{-1}$

supplementary materials

c = 21.564 (4) Å
$\beta = 91.40 \ (3)^{\circ}$
$V = 1572.2 (5) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector 3090 independent reflections diffractometer Radiation source: fine-focus sealed tube 2000 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.041$ Monochromator: graphite T = 298(2) K $\theta_{\text{max}} = 26.0^{\circ}$ $\theta_{\min} = 1.9^{\circ}$ ω scans Absorption correction: multi-scan $h = 0 \rightarrow 11$ (SADABS; Bruker, 2001) $T_{\min} = 0.939, T_{\max} = 0.947$ $k = 0 \rightarrow 9$

T = 298 (2) KBlock, colorless $0.23\times0.20\times0.20~mm$

 $l = -26 \rightarrow 26$

Refinement

3284 measured reflections

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.071$	H-atom parameters constrained
$wR(F^2) = 0.283$	$w = 1/[\sigma^2(F_o^2) + (0.171P)^2 + 0.5784P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
3090 reflections	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
209 parameters	$\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C14	1.0156 (4)	0.6558 (5)	0.20983 (16)	0.0391 (9)

C7	1.0360 (4)	0.6643 (5)	0.27791 (16)	0.0362 (8)
C15	1.1233 (4)	0.5884 (5)	0.16872 (17)	0.0428 (9)
C13	0.8915 (4)	0.7118 (5)	0.18452 (17)	0.0394 (9)
H13	0.8261	0.7565	0.2117	0.047*
C8	1.1571 (4)	0.7361 (5)	0.30569 (18)	0.0424 (9)
H8	1.2298	0.7728	0.2807	0.051*
C11	0.9438 (4)	0.6248 (6)	0.38096 (19)	0.0509 (10)
H11	0.8726	0.5864	0.4064	0.061*
C2	0.6293 (4)	0.8598 (6)	0.13280 (19)	0.0486 (10)
H2	0.6553	0.9036	0.1716	0.058*
C1	0.7207 (4)	0.7578 (5)	0.09956 (18)	0.0417 (9)
C6	0.6816 (5)	0.6998 (6)	0.04035 (19)	0.0510 (11)
Н6	0.7431	0.6344	0.0168	0.061*
C10	1.0635 (4)	0.6998 (6)	0.40610 (18)	0.0486 (10)
C12	0.9308 (4)	0.6072 (5)	0.31709 (18)	0.0430 (9)
H12	0.8500	0.5562	0.3000	0.052*
C9	1.1716 (4)	0.7540 (5)	0.36912 (19)	0.0470 (10)
Н9	1.2531	0.8020	0.3867	0.056*
C5	0.5495 (5)	0.7422 (6)	0.0178 (2)	0.0524 (11)
C4	0.4541 (5)	0.8378 (7)	0.0493 (2)	0.0585 (12)
H4	0.3650	0.8629	0.0329	0.070*
C3	0.4983 (4)	0.8946 (6)	0.1066 (2)	0.0542 (11)
01	1.1121 (3)	0.5871 (5)	0.11246 (13)	0.0641 (9)
O2	1.2379 (3)	0.5253 (4)	0.19845 (12)	0.0461 (7)
O3	0.8532 (4)	0.7092 (5)	0.12313 (16)	0.0664 (9)
C16	1.3459 (4)	0.4580 (7)	0.1585 (2)	0.0563 (12)
H16A	1.3703	0.5452	0.1280	0.068*
H16B	1.3113	0.3555	0.1367	0.068*
F1	0.5110 (3)	0.6844 (5)	-0.03974 (14)	0.0852 (10)
C17	1.4696 (5)	0.4135 (9)	0.1967 (2)	0.0833 (18)
H17A	1.4993	0.5136	0.2202	0.125*
H17B	1.5443	0.3769	0.1704	0.125*
H17C	1.4466	0.3206	0.2244	0.125*
F2	0.4078 (3)	0.9913 (5)	0.14082 (16)	0.0970 (12)
Cl1	1.07938 (14)	0.7341 (2)	0.48566 (5)	0.0805 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C14	0.0362 (19)	0.043 (2)	0.0375 (19)	0.0008 (16)	-0.0035 (15)	0.0011 (16)
C7	0.0356 (18)	0.0357 (19)	0.0374 (19)	0.0084 (15)	-0.0012 (14)	0.0008 (15)
C15	0.040 (2)	0.048 (2)	0.040 (2)	0.0021 (17)	-0.0007 (16)	0.0006 (17)
C13	0.0382 (19)	0.041 (2)	0.0386 (19)	0.0015 (16)	-0.0023 (15)	-0.0047 (16)
C8	0.0340 (18)	0.050 (2)	0.043 (2)	-0.0018 (17)	-0.0016 (15)	-0.0006 (17)
C11	0.044 (2)	0.065 (3)	0.044 (2)	0.003 (2)	0.0058 (17)	0.005 (2)
C2	0.050 (2)	0.049 (2)	0.047 (2)	0.0039 (19)	-0.0064 (18)	-0.0056 (19)
C1	0.0375 (19)	0.045 (2)	0.042 (2)	0.0017 (17)	-0.0041 (16)	0.0047 (17)
C6	0.050 (2)	0.060 (3)	0.043 (2)	0.010 (2)	-0.0033 (18)	-0.0019 (19)

supplementary materials

C10	0.045 (2)	0.065 (3)	0.0356 (19)	0.010(2)	-0.0018 (16)	-0.0038 (19)
C12	0.0374 (19)	0.047 (2)	0.045 (2)	-0.0024 (17)	-0.0015 (16)	0.0012 (17)
C9	0.038 (2)	0.056 (3)	0.047 (2)	0.0011 (18)	-0.0059 (17)	-0.0103 (19)
C5	0.052 (2)	0.059 (3)	0.045 (2)	0.002 (2)	-0.0103 (19)	-0.001 (2)
C4	0.044 (2)	0.072 (3)	0.059 (3)	0.006 (2)	-0.013 (2)	0.006 (2)
C3	0.048 (2)	0.054 (3)	0.060 (3)	0.011 (2)	-0.0001 (19)	-0.003 (2)
01	0.0592 (19)	0.095 (3)	0.0375 (16)	0.0233 (18)	0.0006 (13)	0.0027 (16)
O2	0.0393 (14)	0.0551 (17)	0.0442 (15)	0.0111 (13)	0.0049 (11)	-0.0029 (12)
03	0.060 (2)	0.080 (2)	0.058 (2)	0.0072 (17)	-0.0116 (15)	-0.0001 (17)
C16	0.050 (2)	0.068 (3)	0.051 (2)	0.010 (2)	0.011 (2)	-0.007 (2)
F1	0.076 (2)	0.124 (3)	0.0538 (16)	0.0185 (19)	-0.0268 (14)	-0.0219 (17)
C17	0.058 (3)	0.126 (5)	0.066 (3)	0.038 (3)	0.004 (2)	-0.009 (3)
F2	0.070 (2)	0.134 (3)	0.087 (2)	0.053 (2)	-0.0065 (16)	-0.029 (2)
Cl1	0.0637 (8)	0.1398 (14)	0.0378 (6)	0.0078 (8)	-0.0051 (5)	-0.0114 (7)

Geometric parameters (Å, °)

C14—C13	1.357 (5)	C6—C5	1.374 (6)
C14—C15	1.465 (5)	С6—Н6	0.9300
C14—C7	1.478 (5)	C10—C9	1.380 (6)
C7—C12	1.395 (5)	C10—C11	1.739 (4)
С7—С8	1.397 (5)	C12—H12	0.9300
C15—O1	1.215 (5)	С9—Н9	0.9300
C15—O2	1.340 (5)	C5—F1	1.359 (5)
C13—O3	1.364 (5)	C5—C4	1.361 (7)
С13—Н13	0.9300	C4—C3	1.368 (6)
С8—С9	1.378 (5)	C4—H4	0.9300
С8—Н8	0.9300	C3—F2	1.365 (5)
C11—C10	1.374 (6)	O2—C16	1.450 (5)
C11—C12	1.386 (5)	C16—C17	1.459 (6)
C11—H11	0.9300	C16—H16A	0.9700
C2—C3	1.380 (6)	C16—H16B	0.9700
C2—C1	1.382 (6)	C17—H17A	0.9600
С2—Н2	0.9300	C17—H17B	0.9600
C1—C6	1.394 (6)	C17—H17C	0.9600
C1—O3	1.397 (5)		
C13—C14—C15	118.8 (3)	C11—C12—C7	121.5 (4)
C13—C14—C7	118.5 (3)	C11—C12—H12	119.2
C15—C14—C7	122.7 (3)	C7—C12—H12	119.2
С12—С7—С8	117.3 (3)	C8—C9—C10	119.0 (4)
C12—C7—C14	120.6 (3)	С8—С9—Н9	120.5
C8—C7—C14	122.0 (3)	С10—С9—Н9	120.5
O1—C15—O2	121.7 (3)	F1—C5—C4	117.6 (4)
O1-C15-C14	124.1 (3)	F1—C5—C6	118.0 (4)
O2—C15—C14	114.2 (3)	C4—C5—C6	124.4 (4)
C14—C13—O3	126.4 (4)	C5—C4—C3	115.5 (4)
С14—С13—Н13	116.8	C5—C4—H4	122.3
O3—C13—H13	116.8	C3—C4—H4	122.3
С9—С8—С7	121.8 (4)	F2—C3—C4	118.5 (4)

С9—С8—Н8	119.1	F2—C3—C2	117.3 (4)
С7—С8—Н8	119.1	C4—C3—C2	124.2 (4)
C10-C11-C12	119.1 (4)	C15—O2—C16	115.0 (3)
C10-C11-H11	120.5	C13—O3—C1	124.4 (3)
C12—C11—H11	120.5	O2—C16—C17	108.7 (4)
C3—C2—C1	118.0 (4)	O2-C16-H16A	110.0
С3—С2—Н2	121.0	C17—C16—H16A	110.0
C1—C2—H2	121.0	O2-C16-H16B	110.0
C2—C1—C6	119.9 (4)	C17—C16—H16B	110.0
C2—C1—O3	122.3 (4)	H16A—C16—H16B	108.3
C6—C1—O3	117.7 (4)	C16—C17—H17A	109.5
C5—C6—C1	118.0 (4)	С16—С17—Н17В	109.5
С5—С6—Н6	121.0	H17A—C17—H17B	109.5
С1—С6—Н6	121.0	C16—C17—H17C	109.5
C11—C10—C9	121.3 (4)	H17A—C17—H17C	109.5
C11—C10—Cl1	120.3 (3)	H17B—C17—H17C	109.5
C9—C10—Cl1	118.4 (3)		
C13—C14—C7—C12	45.7 (5)	C8—C7—C12—C11	1.6 (6)
C15—C14—C7—C12	-133.9 (4)	C14—C7—C12—C11	-175.6 (4)
C13—C14—C7—C8	-131.3 (4)	C7—C8—C9—C10	-0.1 (6)
C15—C14—C7—C8	49.1 (5)	C11—C10—C9—C8	1.6 (7)
C13—C14—C15—O1	3.9 (6)	Cl1—C10—C9—C8	-176.6 (3)
C7—C14—C15—O1	-176.5 (4)	C1—C6—C5—F1	-179.5 (4)
C13—C14—C15—O2	-175.6 (4)	C1—C6—C5—C4	0.3 (7)
C7—C14—C15—O2	3.9 (6)	F1—C5—C4—C3	-179.3 (4)
C15—C14—C13—O3	1.5 (6)	C6—C5—C4—C3	0.9 (7)
C7—C14—C13—O3	-178.1 (4)	C5—C4—C3—F2	-179.9 (4)
C12—C7—C8—C9	-1.4 (6)	C5—C4—C3—C2	-0.3 (7)
C14—C7—C8—C9	175.7 (4)	C1—C2—C3—F2	178.1 (4)
C3—C2—C1—C6	2.7 (6)	C1—C2—C3—C4	-1.5 (7)
C3—C2—C1—O3	-177.2 (4)	O1-C15-O2-C16	0.5 (6)
C2—C1—C6—C5	-2.2 (7)	C14—C15—O2—C16	-179.9 (4)
O3—C1—C6—C5	177.8 (4)	C14—C13—O3—C1	175.6 (4)
C12—C11—C10—C9	-1.4 (7)	C2-C1-O3-C13	19.2 (6)
C12-C11-C10-Cl1	176.7 (3)	C6—C1—O3—C13	-160.7 (4)
C10-C11-C12-C7	-0.2 (6)	C15—O2—C16—C17	173.4 (4)

Fig. 1